Rotodynamic pumps — Hydraulic performance acceptance tests — Grades 1, 2 and 3

Amendment No. 1

Correction amendment

Publishing and Approval Dates

Council of Standards Australia Approval: 7 February 2022 Published: 25 March 2022

Summary

This Amendment applies to the following elements:

- Clauses 3.1.1.4, 3.2.12, 3.2.15, 3.2.20.2, 3.2.24, 4.3.3.1
- <u>Tables 1</u>, <u>8</u>, <u>C.1</u>, <u>I.1</u>
- Figure A.6
- Appendix A.4.3, A.4.7

Amendment Details

AS ISO 9906:2018 is amended as follows. The amendments should be inserted in the locations as instructed.

Element	Instruction/New text	
Cl 3.1.1.4	Delete "Note" and replace with "Note 1 to entry:".	
Cl 3.2.12	1 <i>Delete</i> Equation 6 and <i>replace</i> with the following:	
	$H_x = z_x + \frac{p_x}{\rho \times g} + \frac{U_x^2}{2 \times g}$	
	2 <i>Delete</i> Equation 7 and <i>replace</i> with the following:	
	$H_{x(abs)} = z_x + \frac{p_x}{\rho \times g} + \frac{Pamb}{\rho \times g} + \frac{U_x^2}{2g}$	
Cl 3.2.15	1 <i>Delete</i> Equation 10 and <i>replace</i> with the following:	
	$\rho_{\rm m} = \frac{\rho_1 + \rho_2}{2}$	
	2 Delete Equation 11 and replace with the following:	
	$H = z_2 - z_1 + \frac{p_2 - p_1}{\rho_{\rm m} \cdot g} + \frac{U_2^2 - U_1^2}{2g}$	
Cl 3.2.20.2	<i>Delete</i> "(double inlet pumps with vertical or inclined axis)" from second paragraph.	
Cl 3.2.24	Delete Equation 14 and replace with the following:	

© Standards Australia Ltd 2022 ISBN 978 1 76113 681 8 Element

Instruction/New text

$$K = \frac{2\pi n Q'^{1/2}}{(gH')^{3/4}} = \frac{\omega Q'^{1/2}}{y'^{3/4}}$$

Tbl 1

Delete <u>Table 1</u> and *replace* with the following:

Table 1 — Alphabetical list of basic letters used as symbols

Symbol	Quantity	Unit
A	Area	m ²
D	Diameter	m
е	Overall uncertainty, relative value	%
f	Frequency	s_1, Hz
g	Acceleration due to gravity ^a	m/s ²
Н	Pump total head	m
HJ	Losses in terms of head of liquid	m
k	Equivalent uniform roughness	m
K	Type number	Pure number
1	Length	m
М	Torque	Nm
п	Speed of rotation	s ⁻¹ , min ⁻¹
NPSH	Net positive suction head	m
р	Pressure	Ра
Р	Power	W
q	Mass flow rate ^b	kg/s
Q	(Volume) rate of flow ^c	m ³ /s
Re	Reynolds number	Pure number
τ	Tolerance factor, relative value	%
t	Students distribution	Pure number
U	Mean velocity	m/s
ν	Local velocity	m/s
V	Volume	m ³
У	Specific energy	J/kg
Z	Height above reference plane	m
z _D	Difference between NPSH datum plane and reference plane (see 3.2.20)	m
η	Efficiency	Pure number
θ	Temperature	°C
λ	Pipe friction loss coefficient	Pure number
v	Kinematic viscosity	m²/s
ρ	Density	kg/m ³
ω	Angular velocity	rad/s

In principle, the local value of g should be used. Nevertheless, for grades 2 and 3, it is sufficient to use a value of 9,81 m/s². For the calculation of the local value g = 9,780 3 (1 + 0,005 3 sin² φ) – 3 × 10⁻⁶ · Z, where φ is the latitude and Z is the height above sea level.

^b An optional symbol for mass flow rate is $q_{\rm m}$.